Study on relationships between climate-related covariates and pipe bursts using evolutionary-based modelling

Research Area: Hydro Year: 2014
Type of Publication: Article
Authors:
Journal: Journal of Hydroinformatics Volume: 16
Number: 4 Pages: 743-757
ISSN: 1464-7141
Note:
cited By 3
Abstract:
Researchers extensively studied external loads since they are widely recognized as significant contributors to water pipe failures. Physical phenomena that affect pipe bursts, such as pipeenvironment interactions, are very complex and only partially understood. This paper analyses the possible link between pipe bursts and climate-related factors. Many water utilities observed consistent occurrence of peaks in pipe bursts in some periods of the year, during winter or summer. The paper investigates the relationships between climate data (i.e., temperature and precipitationrelated covariates) and pipe bursts recorded during a 24-year period in Scarborough (Ontario, Canada). The Evolutionary Polynomial Regression modelling paradigm is used here. This approach is broader than statistical modelling, implementing a multi-modelling approach, where a multiobjective genetic algorithm is used to get optimal models in terms of parsimony of mathematical expressions vs. fitting to data. The analyses yielded interesting results, in particular for cold seasons, where the discerned models show good accuracy and the most influential explanatory variables are clearly identified. The models discerned for warm seasons show lower accuracy, possibly implying that the overall phenomena that underlay the generation of pipe bursts during warm seasons cannot be thoroughly explained by the available climate-related covariates. © 2014 IWA Publishing.
[Bibtex]
[ Back ]

Translate



Questo sito utilizza cookies tecnici.
Proseguendo la navigazione acconsenti all'uso dei cookie.